

WB32F10x

Getting Started Development

Westberry Technology (ChangZhou) Corp., ltd

II

WB32F10x
Getting Start Development

Contents

CONTENTS ... II

1 WB32F10X FIRMWARE LIBRARY INTRODUCTION .. 3

2 USE THE KEIL MDK TO CREATE THE PROJECT ... 4

3 DETAILS OF WB32F10X STANDARD PERIPHERALS LIBRARY ... 16

REVISION HISTORY ... 18

IMPORTANT NOTICE .. 19

 3 / 19 V1.2

WB32F10x
Getting Start Development

1 WB32F10x Firmware Library Introduction

The WB32F10x Standard Peripherals Library is structured as follows:

This library contains a collection of routines, data structures and macros covering the features of
WB32F10x peripherals.

Documentation for the WB32F10X firmware library is stored in the Documentation folder.

⚫ Libraries contains three subfolders, CMSIS, WB32F10x_StdPeripher_Driver and
WB32F10x_USBDevice_Driver.

⚫ The CMSIS stores the startup files, headers, etc. associated with the WB32F10x chip.

⚫ The WB32F10X_STDPeripher_Driver contains the source code of the WB32F10x firmware library,
which is related to the standard peripheral.

⚫ The WB32F10x_USBDevice_Driver contains the WB32F10X USB device protocol stack code.

The Project folder contains two subfolders, WB32F10X_StdPeripher_Examples and
WB32F10X_StdPeripher_Template.

⚫ The WB32F10X_StdPeripher_Example folder contains the official source code of the firmware provided
by WestberryTech for reference.

⚫ The WB32F10X_StdPeripher_Template folder contains the file templates needed to create the new
project.

The Utilities folder holds common source code.

 4 / 19 V1.2

WB32F10x
Getting Start Development

2 Use the keil mdk to create the project

Step 01, Create a new folder named Template to hold the entire project.

Step 02, Create Libraries, Project and User subfolders in the Template folder(You can also make the project
directory structure according to your own habits.).

Step 03, Copy the contents of the Libraries floder in the WB32F10x_StdPeriph_Lib floder to the
Template\Libraries folder.
Step 04, Copy the contents of the Project\ WB32F10X_STDPeripher_Template folder from the
WB32F10x_StdPeriph_Lib floder to the Template\User folder.

Step 05, Open the Keil MDK software，Click Project-> New uVision Project… as shown:

 5 / 19 V1.2

WB32F10x
Getting Start Development

Step 06, Select the device to use for the project as ARMCM3, and then click OK.

Step 07, You will see the Manage Run-Time Environment dialog pop up and you can click Cancel to close the
dialog box.

 6 / 19 V1.2

WB32F10x
Getting Start Development

Step 08, You can set up three Groups: CMSIS, User, StdDriver before import the Standard Peripherals
Library file.

Add files to the Group

Add to the CMSIS Group:

Template\Libraries\CMSIS\Device\WB\WB32F10x\startup\arm\startup_wb32f10x.s

Template\Libraries\CMSIS\Device\WB\WB32F10x\system_wb32f10x.c

Add to the User Group：

Template\User\main.c

Template\User\wb32f10x_it.c

Add all the .c(source code)files in the Template\Libraries\WB32F10x_StdPeriph_Driver\ SRC
folder to the STDDriver Group

 7 / 19 V1.2

WB32F10x
Getting Start Development

Finally,the whole project is structured as follows:

 8 / 19 V1.2

WB32F10x
Getting Start Development

Step 09, Click the icon below to open the Options for Target dialog Box.

Configure Read/Only Memeory Areas and Read/Write Memory Areas (Configure the starting address and
size of Flash and SRAM.).

Note：Configure the Flash and SRAM sizes based on your IC type. 128KB Flash and 28KB SRAM are used

as an example (see the following table for capacity configurations of other Product Code).

Product Code Flash Size SRAM Size

WB32F10xx6 0x8000 (32KB) 0x3000 (12KB)

WB32F10xx8 0x10000 (64KB) 0x5000 (20KB)

WB32F10xx9 0x18000 (96KB) 0x7000 (28KB)

WB32F10xxB 0x20000 (128KB) 0x7000 (28KB)

WB32F10xxC 0x40000 (256KB) 0x9000 (36KB)

 9 / 19 V1.2

WB32F10x
Getting Start Development

Step 10, Configure the header file include path for the project in the C/C++ TAB.

Add the paths as follows：

..\Libraries\CMSIS\Include

..\Libraries\CMSIS\Device\WB\WB32F10x

..\Libraries\WB32F10x_StdPeriph_Driver\inc

..\User

 10 / 19 V1.2

WB32F10x
Getting Start Development

Step 11, Include USE_STDALTER_DRIVER and MAINCLK_FREQ_72MHZ definitions in the
Preprocessor Symbols (see below for details on these two definitions).

USE_STDPERIPH_DRIVER definition indicates using Standard Peripherals Library
MAINCLK_FREQ_72MHz definition indicates using the 72MHz Main Clock configuration function
predefined in system_wb32f10x.c to configure the Main Clock.
HSE_VALUE=12000000 definition indicates the external crystal frequency used is 12MHz.

Note: The main frequency cannot exceed the maximum frequency supported by your IC type.

Step 12, Click OK. At this point, the project setup configuration is complete. Next we will configure
debugging.

 11 / 19 V1.2

WB32F10x
Getting Start Development

Step 13, Because the WB32F10x is an ARM Cortex-M3 chip, you can use a Cortex-M3-enabled
debugger (e.g., JLink, Ulink, CMSIS-DAP, etc.) to debug your applications. Let's use JLink as an
example to demonstrate the configuration debugging of WB32F10x

Step 14, Connect A JLink tool to your computer, use the JLink SWD interface to connect to the
WB32F10X chip, and power the chip.
Step 15, Open the Options for Target dialog box, switch to the Debug TAB, and choose to J-Link/J-
TRACE Cortex.

 12 / 19 V1.2

WB32F10x
Getting Start Development

Step 16, Click Settings to configure the debugger.

You can see on the right that JLink has detected the WB32F10X chip after select the SW
interface.

Step 17, Then click确定(OK) to exit.In the Utilities TAB,

 13 / 19 V1.2

WB32F10x
Getting Start Development

Step 18, You need to do the setup shown in the following figure:

Then click the Settings button to open the Flash Programming configuration dialog box. Do the
configuration as shown.

 14 / 19 V1.2

WB32F10x
Getting Start Development

Step 19, Programming Algorithm configuration

Step 20, Copy the WB32F10X_256. FLM file provided by WestberryTech to the corresponding
folder in the installation directory of Keil MDK
(on my computer the path is D:\Program Files (x86)\Keil_v523\ARM\Flash)

Then click the Add button in the Programming Algorithm dialog box

Step 21, Locate the Programming Algorithm named WB32F10X 256KB Flash and click Add.

 15 / 19 V1.2

WB32F10x
Getting Start Development

Then click 确定(OK).

At this point, you are ready to compile, download, and debug the program. The configuration of
the firmware library is described in the following section.

 16 / 19 V1.2

WB32F10x
Getting Start Development

3 Details of WB32F10x Standard Peripherals Library

The size of the application stack and heap can be configured in startup_wb32f10x.s as follows：

You may want to note that there are two macro definitions in wb32f10x.h.

USE_STDPERIPH_DRIVER means that the application needs to use a peripheral driver from the
firmware library and will include the WB32F10x_conf.h header file in the project.

HSE_VALUE is used to specify the frequency of the external crystal on the WB32F10x chip. By
default, the external crystal HSE frequency of the Peripherals library is 8MH.

If you are using an external crystal oscillator other than 8MHz, be sure to modify or
overwrite the definition in the compiler's global predefined!!

 17 / 19 V1.2

WB32F10x
Getting Start Development

You may want to focus on a few definitions in system_wb32f10x.c.

MAINCLK_FREQ_* ;These macros define the frequency of the chip master clock after the
program is started. You can only choose to define one of them (if none is defined, the chip
master clock is MHSI). You can define it at the compiler global predefined. These macro
definitions are required for the external crystal oscillator of the chip.

If you are defining MAINCLK_FREQ_72MHz, the external crystal frequency of the chip must be
6MHz or 12MHz. (Note: the definition of HSE_VALUE must be overwrote as well).

VECT_TAB_SRAM:This macro maps the interrupt vector to the SRAM(This macro needs to be
defined for projects running in SRAM).

VECT_TAB_OFFSET: This macro is used to set the offset of the starting address for the interrupt
vector (Relative to the starting address of Flash or SRAM.).

 18 / 19 V1.2

WB32F10x
Getting Start Development

Revision History

Revision Date Description

1.2 2022/7/5 Initial Release

 19 / 19 V1.2

WB32F10x
Getting Start Development

IMPORTANT NOTICE

Information in this document is provided solely in connection with WB products. This

document, including any product of WB described in this document (the "Product"), is owned by

WB under the intellectualproperty laws and treaties of the People's Republic of China and other

jurisdictions worldwide. Westberry Technology (ChangZhou) Corp., ltd and its subsidiaries("WB")

reserve the right to make changes, corrections, modifications or improvements, to this document,

and the products and services described herein at any time, without notice.WB does not assume

any liability arising out of the application or use of any Product described in this document.

Purchasers are solely responsible for the choice, selection and use of the WB products and

services described herein, and WB assumes no liability whatsoever relating to the choice,

selection or use of the WB products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is

granted under this document. If any part of this document refers to any third party products or

services it shall not be deemed a license grant by WB for the use of such third party products or

services, or any intellectual property contained therein or considered as a warranty covering the

use in any manner whatsoever of such third party products or services or any intellectual

property contained therein.

Except for customized products which has been expressly identified in the applicable

agreement, the Products are designed, developed or manufactured for ordinary business,

industrial, personal, or household applications only. The Products are not designed, intended, or

authorized for use as components in systems designed or intended for the operation of weapons,

weapons systems, nuclear installations, atomic energy control instruments, combustion control

instruments, airplane or spaceship instruments, transportation instruments, traffic signal

instruments, life-support devices or systems, other medical devices or systems (including

resuscitation equipment and surgical implants), pollution control or hazardous substances

management, or other uses where the failure of the device or Product could cause personal

injury, death, property or environmental damage.

Resale of WB products with provisions different from the statements and/or technical

features set forth in this document shall immediately void any warranty granted by WB for the

WB product or service described herein and shall not create or extend in any manner

whatsoever, anyliability of WB.

©2022 Westberry Technology (ChangZhou) Corp., ltd All Rights Reserved

